Search results for "biological physics"

showing 10 items of 153 documents

Low density lipoproteins and human serum albumin as the carriers of squalenoylated drugs: insights from molecular simulations

2018

We have studied the interaction of three clinically promising squalenoylated drugs (gemcitabine-squalene, adenine-squalene, and doxorubicin-squalene) with low-density lipoproteins (LDL) by means of atomistic molecular dynamics simulations. It is shown that all studied squalenoylated drugs accumulate inside the LDL particles. This effect is promoted by the squalene moiety, which acts as an anchor and drives the hydrophilic drugs into the hydrophobic core of the LDL lipid droplet. Our data suggest that LDL particles could be a universal carriers of squalenoylated drugs in the bloodstream. Interaction of gemcitabine-squalene with human serum albumin (HSA) was also studied by ensemble of dockin…

Squalene[PHYS.PHYS.PHYS-BIO-PH]Physics [physics]/Physics [physics]/Biological Physics [physics.bio-ph]Drug CompoundingPharmaceutical ScienceSerum Albumin Human02 engineering and technologyPlasma protein bindingMolecular Dynamics Simulation010402 general chemistry01 natural sciencesMolecular Docking SimulationDeoxycytidineSqualenechemistry.chemical_compound[ PHYS.PHYS.PHYS-BIO-PH ] Physics [physics]/Physics [physics]/Biological Physics [physics.bio-ph]Lipid dropletDrug DiscoverymedicineMoietyHumansComputingMilieux_MISCELLANEOUSDrug CarriersBinding SitesAdenine[SDV.SP]Life Sciences [q-bio]/Pharmaceutical sciences021001 nanoscience & nanotechnologyHuman serum albuminGemcitabine3. Good health0104 chemical sciences[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistryLipoproteins LDLMolecular Docking Simulation[ SDV.SP ] Life Sciences [q-bio]/Pharmaceutical scienceschemistryDocking (molecular)Doxorubicin[ CHIM.THEO ] Chemical Sciences/Theoretical and/or physical chemistryBiophysicsMolecular MedicineNanoparticles0210 nano-technologyDrug carrierHydrophobic and Hydrophilic Interactionsmedicine.drugProtein Binding
researchProduct

Experimental and numerical study of noise effects in a FitzHugh-Nagumo system driven by a biharmonic signal

2013

Using a nonlinear circuit ruled by the FitzHugh-Nagumo equations, we experimentally investigate the combined effect of noise and a biharmonic driving of respective high and low frequency F and f. Without noise, we show that the response of the circuit to the low frequency can be maximized for a critical amplitude B of the high frequency via the effect of Vibrational Resonance (V.R.). We report that under certain conditions on the biharmonic stimulus, white noise can induce V.R. The effects of colored noise on V.R. are also discussed by considering an Ornstein-Uhlenbeck process. All experimental results are confirmed by numerical analysis of the system response.

Stochastic Resonancenoisevibrational Resonance[PHYS.PHYS.PHYS-BIO-PH] Physics [physics]/Physics [physics]/Biological Physics [physics.bio-ph]neural network[NLIN.NLIN-PS] Nonlinear Sciences [physics]/Pattern Formation and Solitons [nlin.PS]nonlinear circuits[SPI.TRON] Engineering Sciences [physics]/Electronics
researchProduct

Hydrodynamics with spin in bacterial suspensions

2016

We describe a new kind of self-propelling motion of bacteria based on the cooperative action of rotating flagella on the surface of bacteria. Describing the ensemble of rotating flagella in the framework of the hydrodynamics with spin the reciprocal theorem of Stokesian hydrodynamics is generalized accordingly. The velocity of the self-propulsion is expressed in terms of the characteristics of the vector field of flagella orientation and it is shown that unusually high velocities of \textit{Thiovulum majus} bacteria may be explained by the cooperative action of the rotating flagella. The expressions obtained enable us to estimate the torque created by the rotary motors of the bacterium and …

Surface (mathematics)HelicobacteraceaeFOS: Physical sciencesCondensed Matter - Soft Condensed MatterThiovulum majusFlagellumBacterial Physiological PhenomenaModels Biological01 natural sciencesQuantitative Biology::Cell Behavior010305 fluids & plasmasQuantitative Biology::Subcellular ProcessesSuspensionsOrientation (geometry)0103 physical sciencesTorque010306 general physicsSpin-½PhysicsPhysics::Biological Physicsbiologybiology.organism_classificationAction (physics)Classical mechanicsFlagellaHydrodynamicsSoft Condensed Matter (cond-mat.soft)Vector fieldPhysical Review E
researchProduct

Cyclobutane Pyrimidine Photodimerization of DNA/RNA Nucleobases in the Triplet State

2010

The photoinduced formation of cyclobutane pyrimidine dimers in the triplet excited state of the DNA/RNA pyrimidine nucleobases pairs has been studied at the CASPT2 level of theory. A stepwise mechanism through the triplet state of the homodimer is proposed for the pairs of nucleobases cytosine, thymine, and uracil involving a singlet−triplet crossing intermediary structure of biradical character representing the most favorable triplet state conformation of the nucleobases as found in the DNA environment. The efficiency of the mechanism will be modulated by two factors: the effectiveness of the triplet−triplet energy transfer process from a donor photosensitizer molecule, which relates to th…

congenital hereditary and neonatal diseases and abnormalitiesPhysics::Biological PhysicsQuantitative Biology::BiomoleculesPyrimidineStereochemistryPyrimidine dimerUracilPhotochemistryQuantitative Biology::GenomicsNucleobaseThymineCyclobutanechemistry.chemical_compoundIntersystem crossingchemistryGeneral Materials SciencePhysical and Theoretical ChemistryCytosineThe Journal of Physical Chemistry Letters
researchProduct

Is there an infant mortality in bacteria?

2021

This manuscript proposes a significant step in our long-run investigation of infant mortality across species. Since 2016 (Berrut et al. 2016) a succession of studies (Bois et al. 2019) have traced infant mortality from organisms of high complexity (e.g. mammals) down to unicellular organisms. Infant mortality may be considered as a filtering process through which organisms with potentially lethal congenital defects are eliminated. Such defects may have many causes but here we focus particularly on mishaps resulting from non-optimal conditions in the production of proteins, enzymes and other crucial macromolecules. The statistical signature of infant mortality consists in a falling age-speci…

Biological Physics (physics.bio-ph)FOS: Biological sciencesCell Behavior (q-bio.CB)Quantitative Biology - Cell BehaviorFOS: Physical sciencesPhysics - Biological Physics
researchProduct

Anergy in self-directed B lymphocytes from a statistical mechanics perspective

2012

The ability of the adaptive immune system to discriminate between self and non-self mainly stems from the ontogenic clonal-deletion of lymphocytes expressing strong binding affinity with self-peptides. However, some self-directed lymphocytes may evade selection and still be harmless due to a mechanism called clonal anergy. As for B lymphocytes, two major explanations for anergy developed over three decades: according to "Varela theory", it stems from a proper orchestration of the whole B-repertoire, in such a way that self-reactive clones, due to intensive interactions and feed-back from other clones, display more inertia to mount a response. On the other hand, according to the `two-signal …

Biological Physics (physics.bio-ph)FOS: Biological sciencesCell Behavior (q-bio.CB)FOS: Physical sciencesQuantitative Biology - Cell BehaviorDisordered Systems and Neural Networks (cond-mat.dis-nn)Physics - Biological PhysicsCondensed Matter - Disordered Systems and Neural Networks
researchProduct

Pore structure and function of synthetic nanopores with fixed charges: tip shape and rectification properties

2011

We present a complete theoretical study of the relationship between the structure (tip shape and dimensions) and function (selectivity and rectification) of asymmetric nanopores on the basis of previous experimental studies. The theoretical model uses a continuum approach based on the Nernst-Planck equations. According to our results, the nanopore transport properties, such as current-voltage (I-V) characteristics, conductance, rectification ratio, and selectivity, are dictated mainly by the shape of the pore tip (we have distinguished bullet-like, conical, trumpet-like, and hybrid shapes) and the concentration of pore surface charges. As a consequence, the nanopore performance in practical…

Quantitative Biology::BiomoleculesPhysics::Biological PhysicsNanostructureMaterials scienceMechanical EngineeringConductanceBioengineeringNanotechnologyGeneral ChemistryConical surfaceStructure and functionQuantitative Biology::Subcellular ProcessesNanoporeRectificationMechanics of MaterialsChemical physicsGeneral Materials ScienceSurface chargeNanoporous membraneElectrical and Electronic EngineeringNanotechnology
researchProduct

On the thermodynamic origin of metabolic scaling

2018

The origin and shape of metabolic scaling has been controversial since Kleiber found that basal metabolic rate of animals seemed to vary as a power law of their body mass with exponent 3/4, instead of 2/3, as a surface-to-volume argument predicts. The universality of exponent 3/4 -claimed in terms of the fractal properties of the nutrient network- has recently been challenged according to empirical evidence that observed a wealth of robust exponents deviating from 3/4. Here we present a conceptually simple thermodynamic framework, where the dependence of metabolic rate with body mass emerges from a trade-off between the energy dissipated as heat and the energy efficiently used by the organi…

0106 biological sciences0301 basic medicineFOS: Physical scienceslcsh:Medicine92B05010603 evolutionary biology01 natural sciencesPower lawArticle03 medical and health sciencesFractalPhysics - Biological PhysicsStatistical physicslcsh:ScienceQuantitative Biology - Populations and EvolutionAdditive modelScalingMathematicsMultidisciplinarylcsh:RPopulations and Evolution (q-bio.PE)Universality (dynamical systems)030104 developmental biologyBiological Physics (physics.bio-ph)13. Climate actionFOS: Biological sciencesEctothermBasal metabolic rateExponentlcsh:QScientific Reports
researchProduct

Bioelectrical Signals and Ion Channels in the Modeling of Multicellular Patterns and Cancer Biophysics

2016

AbstractBioelectrical signals and ion channels are central to spatial patterns in cell ensembles, a problem of fundamental interest in positional information and cancer processes. We propose a model for electrically connected cells based on simple biological concepts: i) the membrane potential of a single cell characterizes its electrical state; ii) the long-range electrical coupling of the multicellular ensemble is realized by a network of gap junction channels between neighboring cells; and iii) the spatial distribution of an external biochemical agent can modify the conductances of the ion channels in a cell membrane and the multicellular electrical state. We focus on electrical effects …

0301 basic medicineCell signalingComputer scienceCèl·lulesQuantitative Biology::Tissues and OrgansCellElectrophysiological PhenomenaCell CommunicationModels BiologicalArticleBiophysical PhenomenaIon ChannelsMembrane PotentialsQuantitative Biology::Cell BehaviorCell membraneion transport03 medical and health sciences0302 clinical medicineNeoplasmsmedicineHumansbiological physicsIon channelIon transporterMembrane potentialMultidisciplinaryBiophysical PhenomenaGap junctionGap JunctionsBiofísicaElectrophysiological PhenomenaMulticellular organism030104 developmental biologymedicine.anatomical_structure030220 oncology & carcinogenesisBiophysicsScientific Reports
researchProduct

A nonlinear electronic circuit mimicking the neuronal activity in presence of noise

2013

We propose a nonlinear electronic circuit simulating the neuronal activity in a noisy environment. This electronic circuit is ruled by the set of Bonhaeffer-Van der Pol equations and is excited with a white gaussian noise, that is without external deterministic stimuli. Under these conditions, our circuits reveals the Coherence Resonance signature, that is an optimum of regularity in the system response for a given noise intensity.

Coherence ResonanceStochastic resonanceneural network[PHYS.PHYS.PHYS-BIO-PH]Physics [physics]/Physics [physics]/Biological Physics [physics.bio-ph]02 engineering and technologyTopology01 natural sciencesNoise (electronics)symbols.namesakeComputer Science::Emerging TechnologiesNoise generator[NLIN.NLIN-PS]Nonlinear Sciences [physics]/Pattern Formation and Solitons [nlin.PS]Control theory[ PHYS.PHYS.PHYS-BIO-PH ] Physics [physics]/Physics [physics]/Biological Physics [physics.bio-ph]0103 physical sciences[NLIN.NLIN-PS] Nonlinear Sciences [physics]/Pattern Formation and Solitons [nlin.PS]0202 electrical engineering electronic engineering information engineering[ NLIN.NLIN-PS ] Nonlinear Sciences [physics]/Pattern Formation and Solitons [nlin.PS]Value noisestochastic resonance010306 general physicsComputingMilieux_MISCELLANEOUSPhysics[PHYS.PHYS.PHYS-BIO-PH] Physics [physics]/Physics [physics]/Biological Physics [physics.bio-ph]020208 electrical & electronic engineeringShot noiseWhite noiseNoise floor[SPI.TRON] Engineering Sciences [physics]/Electronics[SPI.TRON]Engineering Sciences [physics]/Electronics[ SPI.TRON ] Engineering Sciences [physics]/ElectronicsGaussian noisesymbolsnonlinear circuit
researchProduct